Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A New Functional Global Auto-ignition Model for Hydrocarbon Fuels - Part 1 of 2: An Investigation of Fuel Auto-Ignition Behaviour and Existing Global Models

2010-10-25
2010-01-2161
Homogeneous Charge Compression Ignition (HCCI) engine technology has been an area of rapidly increasing research interest for the past 15 years and appears poised for commercialisation through the efforts of international research institutions and manufacturers alike. In spite of significant worldwide research efforts on numerous aspects of this technology, the need still exists for accurate and computationally efficient fuel auto-ignition models capable of predicting the heat release dynamics of two-stage auto-ignition, especially for full boiling range fuels, sensitive to the effects of pressure, temperature, fuel equivalence ratio and inert dilution.
Journal Article

A New Functional Global Auto-ignition Model for Hydrocarbon Fuels - Part 2 of 2: Model Formulation, Development and Performance Assessment

2010-10-25
2010-01-2169
Homogeneous Charge Compression Ignition (HCCI) engine technology has been an area of rapidly increasing research interest for the past 15 years and appears poised for commercialisation through the efforts of international research institutions and manufacturers alike. In spite of significant worldwide research efforts on numerous aspects of this technology, the need still exists for accurate and computationally efficient fuel auto-ignition models capable of predicting the heat release dynamics of two-stage auto-ignition, especially for full boiling range fuels, sensitive to the effects of pressure, temperature, fuel equivalence ratio and inert dilution.
Journal Article

Characteristics of Nano-Scale Particulates from Gasoline Turbo-Intercooled Direct-Injection Engine

2010-10-25
2010-01-2197
This study aims to identify the factors that control particulate matter (PM) formation and size distribution in direct-injection spark-ignition (DISI) engines. The test engine used for this research was a 1.6 litre, wall-guided DISI, turbocharged, intercooled, in-line 4 cylinder, Euro IV engine. The exhaust sampling point was before the catalytic converter, i.e. engine-out emissions were measured. The first part of this paper investigates the characteristics of PM number and size distribution of DISI and throttle body injected (TBI) engines. The second part investigates the effect of combustion characteristics of DISI engines on the number of 5nm and 10nm (nucleation) and 200nm (accumulation) PM. A statistical analysis of the coefficient of variance (COV) of the maximum rate of pressure rise (RPmax) over 100 cycles was performed against the COV of 5nm, 10nm and 200nm total particle number.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Journal Article

High Shear Rate Rheology of Lower Viscosity Engine Oils Over a Temperature Range of 80° to 150°C Using the Tapered Bearing Simulator (TBS) Viscometer

2010-10-25
2010-01-2288
In 2005, the growing emphasis on fuel efficiency coupled with the long-recognized negative effects of viscous friction caused by engine hydrodynamic lubrication, led to considerations of the benefits of lower viscosity engine oils by the SAE Engine Oil Viscosity Classification (EOVC) Task Force. More recently these considerations were given further impetus by OEM enquiry regarding modification of the SAE Viscosity Classification System to include oils of lower viscosity specification than that of SAE 20. For the EOVC Task Force, such considerations of commercially available, significantly lower viscosity engine oils, also produced a need to reassess the precision of high shear rate viscometry of such engine oils as presently practiced at 150°C - as well as interest in temperatures such as 100° and 120°C believed more representative of engine operating conditions.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

The Art and Science of Systems Engineering Tightly Coupled Programs

2010-10-19
2010-01-2321
This paper discusses the fundamentals of architecting a major human spaceflight program and some of the lessons that can be learned from NASA's Constellation Program. This paper describes the Constellation program, whose primary objective focuses on development of a new generation of vehicles and systems to enable human exploration beyond Earth orbit. Constellation is made up of seven projects that are highly interdependent and is referred to in the NASA management system as a “tightly coupled” program. This paper will discuss the driving architectural priorities and characteristics for human exploration missions beyond earth orbit and how its building blocks are developed through initial capability missions to the International Space Station. The systems engineering challenges of simultaneously defining and developing systems that are interdependent will be discussed.
Journal Article

Driver Distraction/Overload Research and Engineering: Problems and Solutions

2010-10-19
2010-01-2331
Driver distraction is a topic of considerable interest, with the public debate centering on the use of cell phones and texting while driving. However, the driver distraction/overload issue is really much larger. It concerns specific tasks such as entering destinations on navigation systems, retrieving songs on MP3 players, accessing web pages, checking stocks, editing spreadsheets, and performing other tasks on smart phones, as well as, more generally, using in-vehicle information systems. Five major problems related to distraction/overload research and engineering and their solutions are addressed in this paper.
Journal Article

Using IntelliDriveSM Connectivity to Improve Mobility and Environmental Preservation at Signalized Intersections

2010-10-19
2010-01-2317
The recent interest in IntelliDrive(SM) and vehicle connectivity has gone past previous notions of automatic collision notification, internet browsing and off board navigation. Now, in addition to applying the 5.9 GHz ITS band for cooperative collision avoidance, other applications using connectivity between the vehicle and signalized intersections have emerged. Contemporary applications enhancing fuel economy and reducing green house gases (GHG) are the subject of current research and development. Cooperation between vehicle electronics and intelligent traffic management systems could change the landscape for addressing future ECO (economical and ecological) requirements. This manuscript will outline development within one automotive supplier targeted at using connectivity as an enabling technology for sustaining the vision of smart and green transportation systems.
Journal Article

Ford SYNC and Microsoft Windows Embedded Automotive Make Digital Lifestyle a Reality on the Road

2010-10-19
2010-01-2319
With Ford SYNC, Microsoft Corporation and Ford Motor Company have democratized in-vehicle infotainment systems - delighting consumers and bringing a new kind of agility to the automobile industry. Built on Microsoft Auto (now Windows Embedded Automotive), Ford SYNC is a factory-installed, voice-controlled communications and entertainment system that allows drivers to converge their digital lifestyle with their life on the road. Windows Embedded Automotive is an industry leading technology platform that provides integrated infotainment features and a rich user interface. Car manufacturers and suppliers worldwide can use this software to create differentiated, infotainment in-vehicle systems that are immediately attractive to consumers.
Journal Article

Enabling Safety and Mobility through Connectivity

2010-10-19
2010-01-2318
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) networks within the Intelligent Transportation System (ITS) lead to safety and mobility improvements in vehicle road traffic. This paper presents case studies that support the realization of the ITS architecture as an evolutionary process, beginning with driver information systems for enhancing feedback to the users, semi-autonomous control systems for improved vehicle system management, and fully autonomous control for improving vehicle cooperation and management. The paper will also demonstrate how the automotive, telecom, and data and service providers are working together to develop new ITS technologies.
Journal Article

ESC Performance of Aftermarket Modified Vehicles: Testing, Simulation, HIL, and the Need for Collaboration

2010-10-19
2010-01-2342
The enactment of FMVSS 126 requires specific safety performance in vehicles 4,536 Kg (10,000 pounds) or less using an Electronic Stability Control (ESC) system as standard equipment by 2011. Further, in 2012, the regulation requires vehicles that have undergone aftermarket modification to remain in compliance with the performance standard. This paper describes: • a brief overview of the standard and its implications • the collaborative approach used in the first successful approach in meeting that requirement by a lift kit manufacturer o a Hardware In the Loop (HIL) test alternative for establishing a reasonable expectation for a vehicle to demonstrate compliance after modification. • Collaborative challenges overcome: o aftermarket manufacturers seeking information sharing with OEMs and Tier One suppliers: o respecting the intellectual property of OEMs and Tier One suppliers o maintaining the integrity between tool competitors and their customers in cross-collaborative efforts
Journal Article

AUTOSAR as a Key Enabler for Collaborative Product Development

2010-10-19
2010-01-2341
Whether it be in highly visible features like fascinating new infotainment systems or hidden behind the scenes in complex new hybrid powertrain controls, in-vehicle software is rapidly changing the way the automotive industry engages its vehicle-buying customers. In every application where a compelling new electronic solution is emerging, it is enabled by the convergence of in-vehicle software developed by different collaborating partners. As more and more component suppliers, vehicle OEMs, and technology vendors enter into collaborative software development projects with each other, a new set of technical and business challenges are showing collaborative software development to be a very distinctive proposition than traditional stand-alone development.
Journal Article

Improving Driver Safety through Naturalistic Data Collection and Analysis Methods

2010-10-19
2010-01-2333
The design of a safe transportation system requires numerous design decisions that should be based on data acquired by rigorous scientific method. Naturalistic data collection and analysis methods are a relatively new addition to the engineer's toolbox. The naturalistic method is based on unobtrusively monitoring driver and vehicle performance under normal, everyday, driving conditions; generally for extended collection periods. The method generates a wealth of data that is particularly well-suited for identifying the underlying causes of safety deficiencies. Furthermore, the method also provides robust data for the design and evaluation of safety enhancement systems through field studies. Recently the instrumentation required to do this type of study has become much more cost effective allowing larger numbers of vehicles to be instrumented at a fraction of the cost. This paper will first provide an overview of the naturalistic method including comparisons to other available methods.
Journal Article

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

2011-04-12
2011-01-0029
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi-axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Model-Based Design Case Study: Low Cost Audio Head Unit

2011-04-12
2011-01-0052
The use of model-based software development in automotive applications has increased in recent years. Current vehicles contain millions of lines of code, and millions of dollars are spent each year fixing software issues. Most new features are software controlled and many times include distributed functionality, resulting in increased vehicle software content and accelerated complexity. To handle rapid change, OEMs and suppliers must work together to accelerate software development and testing. As development processes adapt to meet this challenge, model-based design can provide a solution. Model-based design is a broad development approach that is applied to a variety of applications in various industries. This paper reviews a project using the MATLAB/Simulink/Stateflow environment to complete a functional model of a low cost radio.
Journal Article

Gossip Networks: The Enabler for Sparsely Populated VANETs

2011-04-12
2011-01-0046
The future deployment of safety-oriented Dedicated Short Range Communications (DSRC) technology may be hindered due to the so-called “Market Penetration” problem: as a wireless network built from scratch, there is lack of value to consumers who are early adopters. In this paper, we explore potential applications that can be supported during the initial phase of vehicular ad-hoc network (VANET) deployment, i.e., sparsely populated VANETs. We show that delay-insensitive information sharing applications are promising since they only require opportunistic network connections (in contrast to safety applications that require “always on” connectivity). This is done via “gossip spread” information distribution protocols by which DSRC vehicles cache and then exchange the information while in range of other DSRC vehicles or road side units. This approach is especially attractive since the number of communicating vehicles will be very small during early deployment years.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Journal Article

Experimental Investigation of Droplet Dynamics and Spray Atomization inside Thermostatic Expansion Valves

2011-04-12
2011-01-0129
In this paper, experimental investigation on spray atomization and droplet dynamics inside a thermostatic expansion valve (TXV), a component commonly used in vehicle refrigeration system, was conducted. A needle and an orifice were copied from a commercial TXV and machined to be mounted inside a chamber with optical access so that the flow inside the TXV is simulated and visualized at the same time. The break-up and atomization of the refrigerant were documented near the downstream of the orifice under different feed conditions for two TXV with different geometry. A Phase Doppler Anemometry (PDA) system was used later to measure the size and velocity of atomized refrigerant droplets. The results showed that the droplet size variation along the radial direction is slightly decreased at near downstream and increased at farther downstream due to the coalescence.
X